Следующий шаг
Основной недостаток формул [1.05-1.07] заключается в том, что они предполагают одинаковую вероятность реализации всех HPR. Поэтому нужна новая формула, которая допускала бы, чтобы с разными HPR ассоциировались различные вероятности. Такая формула позволила бы находить оптимальное f при условии, что дано описание распределение вероятностей HPR.
В 1992 г. я опубликовал набор формул, которые именно это и обеспечивали:
Откуда получаем относительный конечный капитал, или TWR:
или
Слава Україні!
Адмін сайту, який є громадянином України та безвиїзно перебуває в Україні на протязі всього часу повномасштабної російської агресії, зичить щастя та мирного неба всім українським хлопцям та дівчатам! Також він рекомендує українським трейдерам кращих біржових та бінарних брокерів, що мають приємні торгові умови та не співпрацюють з російською федерацією. А саме:
Exness – для доступу до валютного ринку;
RoboForex – для роботи з CFD-контрактами на акції;
Deriv – для опціонної торгівлі.
Ну, і звичайно ж, заборонену в росії компанію Альпарі, через яку Ви маєте можливість долучитися як до валютного ринку, так і до торгівлі акціями та бінарними опціонами (Fix-Contracts). Крім того, Альпарі ще цікава своїми інвестиційними можливостями. Дивіться, наприклад:
рейтинг ПАММ-рахунків;
рейтинг ПАММ-портфелів.
Все буде Україна!
Наконец, если взять корень степени Σpi из уравнения [1.21], то получим средний прирост на игру, или среднее геометрическое HPR (оно будет играть важную роль в дальнейшем):
или
Точно так же, как вы могли пользоваться выражениями [1.04] для решения уравнений [1.03], уравнение [1.22] можно использовать для решения любых проблем с оптимальным f. Вместо формул [1.03-1.07] вы можете взять [1.22]. Для данных с распределением Бернулли это уравнение дает те же результаты, что и формулы Келли. Вы получите те же результаты, как и по формулам 1990 г., если подставите это распределение сделок (где вероятность каждой сделки равна 1/7) в [1.22]. Эту формулу можно использовать для максимизации ожидаемого значения логарифма любого начального количества чего угодно в условиях экспоненциального роста. Теперь посмотрим, как использовать эту формулу в контексте сценарного планирования.
|